skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hébert-Dufresne, Laurent"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Stochastic diffusion is the noisy process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. These processes are increasingly important to better prepare for pandemics and as species ranges shift in response to climate change. Unfortunately, modelling is mostly done with expensive computational simulations or inaccurate deterministic tools that ignore the randomness of dispersal. We introduce ‘mean-FLAME’ models, tracking stochastic dispersion using approximate master equations to follow the probability distribution over all possible states of an area of interest, up to states active enough to be approximated using a mean-field model. In the limit where we track all states, this approach is locally exact, and in the other limit collapses to traditional deterministic models. In predator–prey systems, we show that tracking a handful of states around key absorbing states is sufficient to accurately model extinction. In disease models, we show that classic mean-field approaches underestimate the heterogeneity of epidemics. And in nonlinear dispersal models, we show that deterministic tools fail to capture the speed of spatial diffusion. These effects are all important for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  2. Many models of learning in teams assume that team members can share solutions or learn concurrently. However, these assumptions break down in multidisciplinary teams where team members often complete distinct, interrelated pieces of larger tasks. Such contexts make it difficult for individuals to separate the performance effects of their own actions from the actions of interacting neighbors. In this work, we show that individuals can overcome this challenge by learning from network neighbors through mediating artifacts (like collective performance assessments). When neighbors’ actions influence collective outcomes, teams with different networks perform relatively similarly to one another. However, varying a team’s network can affect performance on tasks that weight individuals’ contributions by network properties. Consequently, when individuals innovate (through “exploring” searches), dense networks hurt performance slightly by increasing uncertainty. In contrast, dense networks moderately help performance when individuals refine their work (through “exploiting” searches) by efficiently finding local optima. We also find that decentralization improves team performance across a battery of 34 tasks. Our results offer design principles for multidisciplinary teams within which other forms of learning prove more difficult. 
    more » « less
  3. Recent outbreaks of Mpox and Ebola, and worrying waves of COVID-19, influenza and respiratory syncytial virus, have all led to a sharp increase in the use of epidemiological models to estimate key epidemiological parameters. The feasibility of this estimation task is known as the practical identifiability (PI) problem. Here, we investigate the PI of eight commonly reported statistics of the classic susceptible–infectious–recovered model using a new measure that shows how much a researcher can expect to learn in a model-based Bayesian analysis of prevalence data. Our findings show that the basic reproductive number and final outbreak size are often poorly identified, with learning exceeding that of individual model parameters only in the early stages of an outbreak. The peak intensity, peak timing and initial growth rate are better identified, being in expectation over 20 times more probable having seen the data by the time the underlying outbreak peaks. We then test PI for a variety of true parameter combinations and find that PI is especially problematic in slow-growing or less-severe outbreaks. These results add to the growing body of literature questioning the reliability of inferences from epidemiological models when limited data are available. 
    more » « less
  4. It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture. First, we define ‘cultural adaptation to climate change’ as a mechanistic process of population-level cultural change. We argue this definition enables rigorous comparisons, yields testable hypotheses from mathematical theory and distinguishes adaptive change, non-adaptive change and desirable policy outcomes. Next, we develop an operational approach to identify ‘cultural adaptation to climate change’ based on established empirical criteria. We apply this approach to data on crop choices and the use of cover crops between 2008 and 2021 from the United States. We find evidence that crop choices are adapting to local trends in two separate climate variables in some regions of the USA. But evidence suggests that cover cropping may be adapting more to the economic environment than climatic conditions. Further research is needed to characterize the process of cultural adaptation, particularly the routes and mechanisms of cultural transmission. Furthermore, climate adaptation policy could benefit from research on factors that differentiate regions exhibiting adaptive trends in crop choice from those that do not. This article is part of the theme issue ‘Climate change adaptation needs a science of culture’. 
    more » « less
  5. Abstract Citizen-generated counter speech is a promising way to fight hate speech and promote peaceful, non-polarized discourse. However, there is a lack of large-scale longitudinal studies of its effectiveness for reducing hate speech. To this end, we perform an exploratory analysis of the effectiveness of counter speech using several different macro- and micro-level measures to analyze 180,000 political conversations that took place on German Twitter over four years. We report on the dynamic interactions of hate and counter speech over time and provide insights into whether, as in ‘classic’ bullying situations, organized efforts are more effective than independent individuals in steering online discourse. Taken together, our results build a multifaceted picture of the dynamics of hate and counter speech online. While we make no causal claims due to the complexity of discourse dynamics, our findings suggest that organized hate speech is associated with changes in public discourse and that counter speech—especially when organized—may help curb hateful rhetoric in online discourse. 
    more » « less
  6. Epidemic models study the spread of undesired agents through populations, be it infectious diseases through a country, misinformation in social media or pests infesting a region. In combating these epidemics, we rely neither on global top-down interventions, nor solely on individual adaptations. Instead, interventions commonly come from local institutions such as public health departments, moderation teams on social media platforms or other forms of group governance. Classic models, which are often individual or agent-based, are ill-suited to capture local adaptations. We leverage developments of institutional dynamics based on cultural group selection to study how groups attempt local control of an epidemic by taking inspiration from the successes and failures of other groups. Incorporating institutional changes into epidemic dynamics reveals paradoxes: a higher transmission rate can result in smaller outbreaks as does decreasing the speed of institutional adaptation. When groups perceive a contagion as more worrisome, they can invest in improved policies and, if they maintain these policies long enough to have impact, lead to a reduction in endemicity. By looking at the interplay between the speed of institutions and the transmission rate of the contagions, we find rich coevolutionary dynamics that reflect the complexity of known biological and social contagions. 
    more » « less
  7. Social change in any society entails changes in both behaviours and institutions. We model a group-structured society in which the transmission of individual behaviour occurs in parallel with the selection of group-level institutions. We consider a cooperative behaviour that generates collective benefits for groups but does not spread between individuals on its own. Groups exhibit institutions that increase the diffusion of the behaviour within the group, but also incur a group cost. Groups adopt institutions in proportion to their fitness. Finally, the behaviour may also spread globally. We find that behaviour and institutions can be mutually reinforcing. But the model also generates behavioural source-sink dynamics when behaviour generated in institutionalized groups spreads to non-institutionalized groups and boosts their fitness. Consequently, the global diffusion of group-beneficial behaviour creates a pattern of institutional free-riding that limits the evolution of group-beneficial institutions. Our model suggests that, in a group-structured society, large-scale beneficial social change can be best achieved when the relevant behaviour and institutions remain correlated. 
    more » « less
  8. Crop switching, in which farmers grow a crop that is novel to a given field, can help agricultural systems adapt to changing environmental, cultural, and market forces. Yet while regional crop production trends receive significant attention, relatively little is known about the local-scale crop switching that underlies these macrotrends. We characterized local crop-switching patterns across the United States using the US Department of Agriculture (USDA) Cropland Data Layer, an annual time series of high resolution (30 m pixel size) remote-sensed cropland data from 2008 to 2022. We found that at multiple spatial scales, crop switching was most common in sparsely cultivated landscapes and in landscapes with high crop diversity, whereas it was low in homogeneous, highly agricultural areas such as the Midwestern corn belt, suggesting a number of potential social and economic mechanisms influencing farmers’ crop choices. Crop-switching rates were high overall, occurring on more than 6% of all US cropland in the average year. Applying a framework that classified crop switches based on their temporal novelty (crop introduction versus discontinuation), spatial novelty (locally divergent versus convergent switching), and categorical novelty (transformative versus incremental switching), we found distinct spatial patterns for these three novelty dimensions, indicating a dynamic and multifaceted set of cropping changes across US farms. Collectively, these results suggest that innovation through crop switching is playing out very differently in various parts of the country, with potentially significant implications for the resilience of agricultural systems to changes in climate and other systemic trends. 
    more » « less
  9. Tarnita, Corina E. (Ed.)